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Abstract. In a recent letter to the editor, criticisms were raised against an argument that 
we used in previous publications to justify a modification in the definition of the non- 
equilibrium entropy. These criticisms call for some comments that are developed in the 
present note. 

In previous publications (Lambermont and Lebon 1973, Lebon 1978, Jou er a1 1979, 
Lebon er a1 1980, Casas-Vazquez and Jou 1981, Lebon and Jou 1982), we proposed 
a new definition for entropy in non-equilibrium which was justified by both macroscopic 
and microscopic arguments. One of these arguments was that the usual expression 
for the entropy production in a rigid heat conductor (Prigogine 1961, De Groot and 
Mazur 1962) 

-= dS -Ivq F d V  
dt 

can become negative when the classical Fourier law is replaced by the Maxwell- 
Cattaneo relation (Maxwell 1867, Cattaneo 1958) 

74 +q  = -AVT. (2) 
The notations are those of Casas-Vazquez and Jou (1981) and Simons (1982). 

The above argument is contested by Simons (1982). Simons argues that if a 
phenomenological law like (2) fails to give dS/dr > 0, then the most logical attitude 
is to replace (2) by another more general expression, without modifying the definition 
of entropy. Our point of view is the opposite. To maintain dS/dt >.O, we keep the 
Maxwell-Cattaneo relation but we introduce a generalised entropy, depending not 
only on T but also on q, treated as an independent variable. 

We agree with Simons that it is not consistent to handle the Maxwell-Cattaneo 
relation jointly with the classical definition of entropy. It is indeed not coherent to 
couple a state equation like s ( T )  that is of order zero in the relaxation time 7 with a 
Maxwell-Cattaneo relation that is of order one in 7. 

Our attitude diverges on how to generalise: Simons suggests to extend the Maxwell- 
Cattaneo relation by including higher-order derivatives 7"a"/ar" (n = 2,3, , . .). As for 
us, we propose a new definition of entropy in the framework of extended irreversible 
thermodynamics. 

Simons' (1982) demonstration runs as follows. He shows that dS/dr > 0, indepen- 
dently of any particular phenomenological equation. He concludes that if a pheno- 
menological equation does not give dS/dt > 0, then such an equation is inadequate. 
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Although correct, Simons’ treatment lacks generality. It is strictly linear since it is 
based on a Fourier analysis. Moreover, the energy balance is used in the form 

c T = - v * q  (c = constant) (3) 
which implies that the state equation for the internal energy U is of the form 

U =cT.  (4) 
Finally, Simons assumes that T remains close to its equilibrium uniform value To. 
All these restrictions limit notably the range of Simons’ demonstration. 

Instead of considering, like Simons, the class of rigid conductors obeying (4), let 
us handle the systems obeying the Maxwell-Cattaneo relation but not the state 
equation (4). Instead of Simons’ equation ( l l ) ,  we obtain now 

-=- ds ‘n~Z~P~22(1-~Imw)exp{-21m[w(p)]t}dp. 
dt TEA I 1 + T ’ ) w I  

Clearly, dS/dt can become negative if T Im w > 1, which is in particular achieved for 
large values of T. Simons would deduce from such a result that the Maxwell-Cattaneo 
relation is inappropriate. For our part, we say that dS/dt as given by (1) can no longer 
represent the positive entropy production. We then express the internal energy (or 
the entropy) as a function of T and the heat flux in such a way that the generalised 
entropy production is positive, whatever the values q and VT may take, provided (2) 
is satisfied. As shown in Casas-Vazquez and Jou (1981), the generalised entropy may 
be written as 

ps(T,q)=pso(T)-~7(AT2)-1q  * q  (6) 

where so is the usual equilibrium entropy per unit mass. 
The difference between Simons’ and our approach may still be viewed under the 

following perspective. Since the Maxwell-Cattaneo relation is a first-order differential 
equation in q, it demands an initial condition for q. This opens the way to two 
possibilities. 

(i) One may consider that the freedom in the choice of the initial q is limited by 
the constraint that (1) must be positive. In this case, it is not necessary to modify the 
classical entropy and Simons’ view is correct. 

(ii) One may consider that q behaves as a new independent variable of the theory. 
In this case, it is obvious that (1) may become negative with a convenient choice of 
the initial value of 4. 

One of the criteria allowing us to decide between the possibilities (i) or (ii) is to 
compare with the kinetic theory. This has been achieved for a viscous heat 
conducting gas and a phonon gas and has indicated that the second choice is the most 
fruitful, both from the macroscopic (Lebon 1978, Lebon et al 1980) and the micro- 
scopic (Grad 1958, Akacsu and Daniels 1970) points of view. 

It must finally be pointed out that the argument contested by Simons is of minor 
importance in the elaboration of our theory. The decisive argument was instead to 
note that a state equation like s ( T )  coupled with Fourier’s law liads to thermal 
disturbances propagating with an infinite velocity, which is physically inadmissible. 
This difficulty is circumvented by selecting s = s (T, q )  together with the Maxwell- 
Cattaneo relation. 

The authors wish to thank Dr Peckover, Warrington, for his relevant comments. 
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